226 research outputs found

    The Regulation of Pulmonary Immunity

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.No evidence has emerged which suggests that the principles of immunity derived from studies on cells from other body sites are contradicted in the lung and its associated lymphoid tissue. What is clear, however, is that the environment dictates the types of cells, their relationship to one another, and what perturbing events will set in motion either the development of an "active" immune response or tolerance. Investigating mechanisms for the development of lung immunity has increased our understanding of how human diseases develop and is continuing to suggest new ways to manipulate pulmonary immune responses. Demonstration that lung cells regulate both nonspecific inflammation and immunity through the expression of adhesion molecules and the secretion of cytokines offers hope for ways to design more effective vaccines, enhance microbial clearance in immunosuppressed hosts, and to suppress manifestations of immunologically mediated lung disease. Important lung diseases targeted for intensive research efforts in the immediate future are tuberculosis, asthma, and fibrotic lung disease. Perhaps even the common cold might be conquered. Considering the pace of current research on lung immunity, it may not be too ambitious to predict that these diseases may be conquered in the next decade

    Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control

    Get PDF
    Background: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for ‘white spot’, a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich’s obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. Results: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich’s metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. Conclusions: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling ‘white spot’ disease and understanding the adaptation to a parasitic lifestyle

    3C 220.3: a radio galaxy lensing a submillimeter galaxy

    Get PDF
    Herschel Space Observatory photometry and extensive multiwavelength followup have revealed that the powerful radio galaxy 3C 220.3 at z=0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z=2.221. At an observed wavelength of 1mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of 1.8" radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a powerful radio galaxy not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1.5", provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1.02") and B (0.61") are about 0.4 +/- 0.3 and 0.55 +/- 0.3. The mass to i-band light ratios of A and B, M/L ~ 8 +/- 4 Msun/Lsun, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CASTLES, LSD, and SL2S samples. The lensed SMG is extremely bright with observed f(250um) = 440mJy owing to a magnification factor mu~10. The SMG spectrum shows luminous, narrow CIV 154.9nm emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.Comment: 17 pages, 14 Figures, accepted for publication in Ap

    Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis

    Get PDF
    The epithelial complement inhibitory proteins (CIPs) cluster of differentiation 46 and 55 (CD46 and CD55) regulate circulating immune complex-mediated complement activation in idiopathic pulmonary fibrosis (IPF). Our previous studies demonstrated that IL-17A mediates epithelial injury via transforming growth factor β1 (TGF-β1) and down-regulates CIPs. In the current study, we examined the mechanistic role of TGF-β1 in complement activation-mediated airway epithelial injury in IPF pathogenesis. We observed lower epithelial CIP expression in IPF lungs compared to normal lungs, associated with elevated levels of complement component 3a and 5a (C3a and C5a), locally and systemically. In normal primary human small airway epithelial cells (SAECs) treated with TGF-β1 (10 ng/ml), C3a, or C5a (100 nM), we observed loss of CIPs and increased poly(ADP-ribose) polymerase (PARP) activation [also observed with RNA interference (RNAi) of CD46/CD55]. TGF-β1-mediated loss of CIPs and Snail induction [SNAI1; a transcriptional repressor of E-cadherin (E-CAD)] was blocked by inhibiting mitogen-activated protein kinase (p38MAPK; SB203580) and RNAi silencing of SNAI1. C3a- and C5a-mediated loss of CIPs was also blocked by p38MAPK inhibition. While C3a upregulated TGFb transcripts, both C3a and C5a down-regulated SMAD7 (negative regulator of TGF-β), and whereas TGF-β1 induced C3a/C5a receptor (C3aR/C5aR) expression, pharmacologic C3aR/C5aR inhibition protected against C3a-/C5a-mediated loss of CIPs. Taken together, our results suggest that epithelial injury in IPF can be collectively amplified as a result of TGF-β1-induced loss of CIPs leading to complement activation that down-regulates CIPs and induces TGF-β1 expressio

    Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium

    Get PDF
    Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium

    Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation

    Get PDF
    Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB

    A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions

    Get PDF
    Background Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed. Results Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted. Conclusions Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively

    The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation

    Get PDF
    Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation

    Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control

    Get PDF
    BACKGROUND: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. RESULTS: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. CONCLUSIONS: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle
    • …
    corecore